Multiple instance learning with bag dissimilarities
نویسندگان
چکیده
Multiple instance learning (MIL) is concerned with learning from sets (bags) of objects (instances), where the individual instance labels are ambiguous. In this setting, supervised learning cannot be applied directly. Often, specialized MIL methods learn by making additional assumptions about the relationship of the bag labels and instance labels. Such assumptions may fit a particular dataset, but do not generalize to the whole range of MIL problems. Other MIL methods shift the focus of assumptions from the labels to the overall (dis)similarity of bags, and therefore learn from bags directly. We propose to represent each bag by a vector of its dissimilarities to other bags in the training set, and treat these dissimilarities as a feature representation. We show several alternatives to define a dissimilarity between bags and discuss which definitions are more suitable for particular MIL problems. The experimental results show that the proposed approach is computationally inexpensive, yet very competitive with state-of-the-art algorithms on a wide range of MIL datasets.
منابع مشابه
A bag-to-class divergence approach to multiple-instance learning
In multi-instance (MI) learning, each object (bag) consists of multiple feature vectors (instances), and is most commonly regarded as a set of points in a multidimensional space. A different viewpoint is that the instances are realisations of random vectors with corresponding probability distribution, and that a bag is the distribution, not the realisations. In MI classification, each bag in th...
متن کاملCombining Instance Information to Classify Bags
Multiple Instance Learning is concerned with learning from sets (bags) of feature vectors (instances), where the bags are labeled, but the instances are not. One of the ways to classify bags is using a (dis)similarity space, where each bag is represented by its dissimilarities to certain prototypes, such as bags or instances from the training set. The instance-based representation preserves the...
متن کاملReview of Multi-Instance Learning and Its applications
Multiple Instance Learning (MIL) is proposed as a variation of supervised learning for problems with incomplete knowledge about labels of training examples. In supervised learning, every training instance is assigned with a discrete or real-valued label. In comparison, in MIL the labels are only assigned to bags of instances. In the binary case, a bag is labeled positive if at least one instanc...
متن کاملRevisiting multiple instance neural networks
Recently neural networks and multiple instance learning are both attractive topics in Artificial Intelligence related research fields. Deep neural networks have achieved great success in supervised learning problems, and multiple instance learning as a typical weakly-supervised learning method is effective for many applications in computer vision, biometrics, nature language processing, etc. In...
متن کاملMultiple Instance Learning for bags with Ordered instances
Multiple Instance Learning (MIL) algorithms are designed for problems where labels are available for groups of instances, commonly referred to as bags. In this paper, we consider a new MIL problem setting where instances in a bag are not exchangeable, and a bijection exists between every pair of bags. We propose a neural network based MIL algorithm (MILOrd) that leverages the existence of such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 48 شماره
صفحات -
تاریخ انتشار 2015